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Problem 1. Let G = C\ {0} and show that every closed curve in G is homotopic to a
closed curve whose trace is contained in {z : |z| = 1}.

Proof. Let v:[0,1] — G be a closed curve in G. Let ' : [0,1] — {z : |z] = 1} be the curve
given by
7(s)

T =Ler

This is well-defined because v(s) # 0 for all s € [0,1]. We will show that v and +' are
homotopic. Define I': [0,1] x [0,1] — G by

P(s,t) = (L=t)y(s) +17'(s)
Note that I'(s,t) # 0 for all s,t and so it is well-defined. It is clearly continuous and
L(s,0) =7(s), T(s,1) =7(s)
'0,t)=I(1,t) (0<t<1).
So «y is homotopic to v in G. O

Problem 2. Let G = C\ {a,b},a # b, and let v be the curve in the book. Show that
n(y;a) =n(y;0) = 0.

Proof. This solution is not rigorous. We see that there are two closed curves going around a
with one going in the clockwise direction and the other in the anti-clockwise direction. This
means that the index contributed by one of them is 1 and the other one is -1. Adding up,
we see that n(v;a) = 0. The same argument holds for b. O

Problem 3. Let G be a region and let 7 and 7, be two closed smooth curves in GG. Suppose
v ~ 71 and IT' satisfies (6.2). Also suppose that ;(s) = I'(s,t) is smooth for each ¢. If
w € C\ G define h(t) = n(y; w) and show that h : [0,1] — Z is continuous.

Proof. Since [0,1] is connected, this is equivalent to showing that h is constant. We know
that, by Cauchy’s theorem, if v and +" are two homotopic closed rectifiable curves in G, then
n(y;w) = n(y;w) for all w € C\ G. We will prove that for all ¢ € [0, 1], 70 is homotopic to
7¢. This shows that h(0) = h(t) for all ¢ € [0, 1], and hence h is constant. Fix 0 <ty < 1.
Let IV : [0,1] x [0,1] — G by

[(s,t) = T(s,tot)

Then I is a homotopy from 7y to 74,. This concludes our proof. O
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Problem 4. Let GG be open and suppose that 7 is a closed rectifiable curve in G such that
v 0.Set r=d({v},0G) and H = {z € C: n(y;2) = 0}.

(a) Show that {z : d(z,0G) < ir} C H.

(b) Use part (a) to show that if f : G — C is analytic then f(z) = a has at most a finite
number of solutions z such that n(y;z) # 0.

Proof. (a) Let z be such that d(z, dG) < 3r. Then there exists 2 € 9G such that d(z,z) < ir.
Then B(xz; 3r) is a connected subset of C\ {y}. Then n(y;.) is constant on B(z; 3r). But
B(z;3r) N (C\ G) # 0. Since v ~ 0, this shows that n(y;2) = 0. As z is arbitrary, this
completes the proof.

(b) WLOG, assume that a = 0. Assume that f is not the constant function. Let Z = {z €
G : f(z) = 0}. Then Z has no limit points in G, by Theorem 3.7. This implies that any
limit point lies in dG. Now we know that the set {z € C : n(v; z) # 0} is bounded. Suppose
there exists infinitely many z € G such that f(z) = 0 and n(v;2) # 0, and denote the set
of all such z by V. The set {z € C : n(v; z) # 0} is bounded. So V is bounded, hence V is
compact. So there exists a sequence {z,,} in V that converges to z in V. But we know that
Z and hence V' has no limit points in G. So x € 9G. Then, by continuity, n(v; z) # 0, which
contradicts (a). O

Problem 5. Let f be analytic in B(a; R) and suppose that f(a) = 0. Show that a is a zero
of multiplicity m iff f(™ Y (a) = ... = f(a) = 0 and f™(a) # 0.

Proof. Suppose that a is a zero of multiplicity m. Then there exists an analytic function
g : B(a; R) — C such that f(z) = (z —a)™g(z) where g(a) # 0. Then, h(z) = (z—a)™ g(z)

has a zero of multiplicity m — 1 at a. Inductively, we assume that h(™=?(a) = ... = h(a) =0
and h™Y(a) # 0.f(2) = (z — a)h(z). So fD(z) = (2 — a)hD(2) + Z;:o h\)(2). Then we
see that f(™ Y (a) = ... = f(a) = 0 and f(™(a) # 0.

Conversely, suppose f"V(a) = ... = f(a) = 0 and f™(a) # 0. Let a be a zero of
multiplicity k. Then f*)(a) # 0, hence k& > m, but f%¥(a) = 0 for i < k by the above
paragraph. This implies that & < m. So k = m. O]

Problem 6. Suppose that f: G — C is analytic and one-one; show that f’(z) # 0 for any
z in G.

Proof. Suppose f'(a) = 0 for some a € G. Let g : G — C be defined as g(z) = f(z) — f(a).
Then g(a) = ¢’(a) = 0. So g has a zero at a of multiplicity at least 2, say, m. Then, by
Theorem 7.4, there exists € > 0 and 0 > 0 such that for 0 < |¢| < J, the equation g(z) = ¢
has exactly m simple roots in B(a;€). This contradicts the fact that g is one-one. O



