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Problem 1. Let G = C \ {0} and show that every closed curve in G is homotopic to a
closed curve whose trace is contained in {z : |z| = 1}.

Proof. Let γ : [0, 1] → G be a closed curve in G. Let γ′ : [0, 1] → {z : |z| = 1} be the curve
given by

γ′(s) =
γ(s)

|γ(s)|
.

This is well-defined because γ(s) 6= 0 for all s ∈ [0, 1]. We will show that γ and γ′ are
homotopic. Define Γ : [0, 1]× [0, 1]→ G by

Γ(s, t) = (1− t)γ(s) + tγ′(s)

Note that Γ(s, t) 6= 0 for all s, t and so it is well-defined. It is clearly continuous and

Γ(s, 0) = γ(s), Γ(s, 1) = γ′(s)

Γ(0, t) = Γ(1, t) (0 ≤ t ≤ 1).

So γ is homotopic to γ′ in G.

Problem 2. Let G = C \ {a, b}, a 6= b, and let γ be the curve in the book. Show that
n(γ; a) = n(γ; b) = 0.

Proof. This solution is not rigorous. We see that there are two closed curves going around a
with one going in the clockwise direction and the other in the anti-clockwise direction. This
means that the index contributed by one of them is 1 and the other one is -1. Adding up,
we see that n(γ; a) = 0. The same argument holds for b.

Problem 3. Let G be a region and let γ0 and γ1 be two closed smooth curves in G. Suppose
γ0 ∼ γ1 and Γ satisfies (6.2). Also suppose that γt(s) = Γ(s, t) is smooth for each t. If
w ∈ C \G define h(t) = n(γt;w) and show that h : [0, 1]→ Z is continuous.

Proof. Since [0, 1] is connected, this is equivalent to showing that h is constant. We know
that, by Cauchy’s theorem, if γ and γ′ are two homotopic closed rectifiable curves in G, then
n(γ;w) = n(γ′;w) for all w ∈ C \G. We will prove that for all t ∈ [0, 1], γ0 is homotopic to
γt. This shows that h(0) = h(t) for all t ∈ [0, 1], and hence h is constant. Fix 0 ≤ t0 ≤ 1.
Let Γ′ : [0, 1]× [0, 1]→ G by

Γ′(s, t) = Γ(s, t0t)

Then Γ′ is a homotopy from γ0 to γt0 . This concludes our proof.
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Problem 4. Let G be open and suppose that γ is a closed rectifiable curve in G such that
γ ≈ 0. Set r = d({γ}, ∂G) and H = {z ∈ C : n(γ; z) = 0}.
(a) Show that {z : d(z, ∂G) < 1

2
r} ⊂ H.

(b) Use part (a) to show that if f : G → C is analytic then f(z) = α has at most a finite
number of solutions z such that n(γ; z) 6= 0.

Proof. (a) Let z be such that d(z, ∂G) < 1
2
r. Then there exists x ∈ ∂G such that d(z, x) < 1

2
r.

Then B(x; 1
2
r) is a connected subset of C \ {γ}. Then n(γ; .) is constant on B(x; 1

2
r). But

B(x; 1
2
r) ∩ (C \ G) 6= ∅. Since γ ≈ 0, this shows that n(γ; z) = 0. As z is arbitrary, this

completes the proof.
(b) WLOG, assume that α = 0. Assume that f is not the constant function. Let Z = {z ∈
G : f(z) = 0}. Then Z has no limit points in G, by Theorem 3.7. This implies that any
limit point lies in ∂G. Now we know that the set {z ∈ C : n(γ; z) 6= 0} is bounded. Suppose
there exists infinitely many z ∈ G such that f(z) = 0 and n(γ; z) 6= 0, and denote the set
of all such z by V. The set {z ∈ C : n(γ; z) 6= 0} is bounded. So V is bounded, hence V is
compact. So there exists a sequence {xn} in V that converges to x in V . But we know that
Z and hence V has no limit points in G. So x ∈ ∂G. Then, by continuity, n(γ;x) 6= 0, which
contradicts (a).

Problem 5. Let f be analytic in B(a;R) and suppose that f(a) = 0. Show that a is a zero
of multiplicity m iff f (m−1)(a) = ... = f(a) = 0 and f (m)(a) 6= 0.

Proof. Suppose that a is a zero of multiplicity m. Then there exists an analytic function
g : B(a;R)→ C such that f(z) = (z−a)mg(z) where g(a) 6= 0. Then, h(z) = (z−a)m−1g(z)
has a zero of multiplicity m− 1 at a. Inductively, we assume that h(m−2)(a) = ... = h(a) = 0
and h(m−1)(a) 6= 0.f(z) = (z − a)h(z). So f (i)(z) = (z − a)h(i)(z) +

∑i−1
j=0 h

(j)(z). Then we

see that f (m−1)(a) = ... = f(a) = 0 and f (m)(a) 6= 0.
Conversely, suppose f (m−1)(a) = ... = f(a) = 0 and f (m)(a) 6= 0. Let a be a zero of
multiplicity k. Then f (k)(a) 6= 0, hence k ≥ m, but f (i)(a) = 0 for i < k by the above
paragraph. This implies that k ≤ m. So k = m.

Problem 6. Suppose that f : G→ C is analytic and one-one; show that f ′(z) 6= 0 for any
z in G.

Proof. Suppose f ′(a) = 0 for some a ∈ G. Let g : G→ C be defined as g(z) = f(z)− f(a).
Then g(a) = g′(a) = 0. So g has a zero at a of multiplicity at least 2, say, m. Then, by
Theorem 7.4, there exists ε > 0 and δ > 0 such that for 0 < |ζ| < δ, the equation g(z) = ζ
has exactly m simple roots in B(a; ε). This contradicts the fact that g is one-one.
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