Solutions: Homework 7

Nandagopal Ramachandran

December 8, 2019

Problem 1. Let $G=\mathbb{C} \backslash\{0\}$ and show that every closed curve in G is homotopic to a closed curve whose trace is contained in $\{z:|z|=1\}$.

Proof. Let $\gamma:[0,1] \rightarrow G$ be a closed curve in G. Let $\gamma^{\prime}:[0,1] \rightarrow\{z:|z|=1\}$ be the curve given by

$$
\gamma^{\prime}(s)=\frac{\gamma(s)}{|\gamma(s)|} .
$$

This is well-defined because $\gamma(s) \neq 0$ for all $s \in[0,1]$. We will show that γ and γ^{\prime} are homotopic. Define $\Gamma:[0,1] \times[0,1] \rightarrow G$ by

$$
\Gamma(s, t)=(1-t) \gamma(s)+t \gamma^{\prime}(s)
$$

Note that $\Gamma(s, t) \neq 0$ for all s, t and so it is well-defined. It is clearly continuous and

$$
\begin{gathered}
\Gamma(s, 0)=\gamma(s), \quad \Gamma(s, 1)=\gamma^{\prime}(s) \\
\Gamma(0, t)=\Gamma(1, t) \quad(0 \leq t \leq 1)
\end{gathered}
$$

So γ is homotopic to γ^{\prime} in G.
Problem 2. Let $G=\mathbb{C} \backslash\{a, b\}, a \neq b$, and let γ be the curve in the book. Show that $n(\gamma ; a)=n(\gamma ; b)=0$.

Proof. This solution is not rigorous. We see that there are two closed curves going around a with one going in the clockwise direction and the other in the anti-clockwise direction. This means that the index contributed by one of them is 1 and the other one is -1 . Adding up, we see that $n(\gamma ; a)=0$. The same argument holds for b.

Problem 3. Let G be a region and let γ_{0} and γ_{1} be two closed smooth curves in G. Suppose $\gamma_{0} \sim \gamma_{1}$ and Γ satisfies (6.2). Also suppose that $\gamma_{t}(s)=\Gamma(s, t)$ is smooth for each t. If $w \in \mathbb{C} \backslash G$ define $h(t)=n\left(\gamma_{t} ; w\right)$ and show that $h:[0,1] \rightarrow \mathbb{Z}$ is continuous.

Proof. Since $[0,1]$ is connected, this is equivalent to showing that h is constant. We know that, by Cauchy's theorem, if γ and γ^{\prime} are two homotopic closed rectifiable curves in G, then $n(\gamma ; w)=n\left(\gamma^{\prime} ; w\right)$ for all $w \in \mathbb{C} \backslash G$. We will prove that for all $t \in[0,1], \gamma_{0}$ is homotopic to γ_{t}. This shows that $h(0)=h(t)$ for all $t \in[0,1]$, and hence h is constant. Fix $0 \leq t_{0} \leq 1$. Let $\Gamma^{\prime}:[0,1] \times[0,1] \rightarrow G$ by

$$
\Gamma^{\prime}(s, t)=\Gamma\left(s, t_{0} t\right)
$$

Then Γ^{\prime} is a homotopy from γ_{0} to $\gamma_{t_{0}}$. This concludes our proof.

Problem 4. Let G be open and suppose that γ is a closed rectifiable curve in G such that $\gamma \approx 0$. Set $r=d(\{\gamma\}, \partial G)$ and $H=\{z \in \mathbb{C}: n(\gamma ; z)=0\}$.
(a) Show that $\left\{z: d(z, \partial G)<\frac{1}{2} r\right\} \subset H$.
(b) Use part (a) to show that if $f: G \rightarrow \mathbb{C}$ is analytic then $f(z)=\alpha$ has at most a finite number of solutions z such that $n(\gamma ; z) \neq 0$.

Proof. (a) Let z be such that $d(z, \partial G)<\frac{1}{2} r$. Then there exists $x \in \partial G$ such that $d(z, x)<\frac{1}{2} r$. Then $B\left(x ; \frac{1}{2} r\right)$ is a connected subset of $\mathbb{C} \backslash\{\gamma\}$. Then $n(\gamma ;$.$) is constant on B\left(x ; \frac{1}{2} r\right)$. But $B\left(x ; \frac{1}{2} r\right) \cap(\mathbb{C} \backslash G) \neq \emptyset$. Since $\gamma \approx 0$, this shows that $n(\gamma ; z)=0$. As z is arbitrary, this completes the proof.
(b) WLOG, assume that $\alpha=0$. Assume that f is not the constant function. Let $Z=\{z \in$ $G: f(z)=0\}$. Then Z has no limit points in G, by Theorem 3.7. This implies that any limit point lies in ∂G. Now we know that the set $\{z \in \mathbb{C}: n(\gamma ; z) \neq 0\}$ is bounded. Suppose there exists infinitely many $z \in G$ such that $f(z)=0$ and $n(\gamma ; z) \neq 0$, and denote the set of all such z by V. The set $\{z \in \mathbb{C}: n(\gamma ; z) \neq 0\}$ is bounded. So V is bounded, hence \bar{V} is compact. So there exists a sequence $\left\{x_{n}\right\}$ in V that converges to x in \bar{V}. But we know that Z and hence V has no limit points in G. So $x \in \partial G$. Then, by continuity, $n(\gamma ; x) \neq 0$, which contradicts (a).

Problem 5. Let f be analytic in $B(a ; R)$ and suppose that $f(a)=0$. Show that a is a zero of multiplicity m iff $f^{(m-1)}(a)=\ldots=f(a)=0$ and $f^{(m)}(a) \neq 0$.

Proof. Suppose that a is a zero of multiplicity m. Then there exists an analytic function $g: B(a ; R) \rightarrow \mathbb{C}$ such that $f(z)=(z-a)^{m} g(z)$ where $g(a) \neq 0$. Then, $h(z)=(z-a)^{m-1} g(z)$ has a zero of multiplicity $m-1$ at a. Inductively, we assume that $h^{(m-2)}(a)=\ldots=h(a)=0$ and $h^{(m-1)}(a) \neq 0 . f(z)=(z-a) h(z)$. So $f^{(i)}(z)=(z-a) h^{(i)}(z)+\sum_{j=0}^{i-1} h^{(j)}(z)$. Then we see that $f^{(m-1)}(a)=\ldots=f(a)=0$ and $f^{(m)}(a) \neq 0$.
Conversely, suppose $f^{(m-1)}(a)=\ldots=f(a)=0$ and $f^{(m)}(a) \neq 0$. Let a be a zero of multiplicity k. Then $f^{(k)}(a) \neq 0$, hence $k \geq m$, but $f^{(i)}(a)=0$ for $i<k$ by the above paragraph. This implies that $k \leq m$. So $k=m$.

Problem 6. Suppose that $f: G \rightarrow \mathbb{C}$ is analytic and one-one; show that $f^{\prime}(z) \neq 0$ for any z in G.

Proof. Suppose $f^{\prime}(a)=0$ for some $a \in G$. Let $g: G \rightarrow \mathbb{C}$ be defined as $g(z)=f(z)-f(a)$. Then $g(a)=g^{\prime}(a)=0$. So g has a zero at a of multiplicity at least 2 , say, m. Then, by Theorem 7.4, there exists $\epsilon>0$ and $\delta>0$ such that for $0<|\zeta|<\delta$, the equation $g(z)=\zeta$ has exactly m simple roots in $B(a ; \epsilon)$. This contradicts the fact that g is one-one.

